Biohydrogen production from kitchen based vegetable waste: effect of pyrolysis temperature and time on catalysed and non-catalysed operation.

نویسندگان

  • Manu Agarwal
  • James Tardio
  • S Venkata Mohan
چکیده

Pyrolysis of kitchen based vegetable waste (KVW) was studied in a designed packed bed reactor. The effect of process parameters like temperature, time and catalyst on bio-gas yield and its composition was studied. The total bio-gas yield was found to be maximum with non-catalysed operation (260ml/g) at 1073K (180min). Higher hydrogen (H(2)) yield with non-catalysed operation (32.68%) was observed at 1073K (180min) while with catalysed operation the requisite temperature (873K) and time (120min) reduced with both silica gel (33.34%) and sand (41.82%) thus, saving energy input. Methane (CH(4)) yield was found to be highest (4.44times than non-catalysed and 1.42 with silica gel) in presence of sand (71.485ml/g) at medium temperature (873K) and time (60min). The catalyst operation reduced the carbondioxide (CO(2)) share from 47.29% to 41.30% (silica gel catalysed) and 21.91% (sand catalysed) at 873K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Synthesis of Biodiesel From Waste Cooking Oil Catalysed by Al2O3 Impregnated with NaOH

Due to the high price of virgin vegetable oils and the drawbacks of the homogeneous catalytic transesterification, in this work an economically profitable alternative process was proposed for biodiesel synthesis in which transesterification of the low-cost waste cooking oil (WCO) with methanol in a heterogeneous system was done. Alumina impregnated with sodium hydroxide was utilized as a solid ...

متن کامل

Efficient Synthesis of Biodiesel From Waste Cooking Oil Catalysed by Al2O3 Impregnated with NaOH

Due to the high price of virgin vegetable oils and the drawbacks of the homogeneous catalytic transesterification, in this work an economically profitable alternative process was proposed for biodiesel synthesis in which transesterification of the low-cost waste cooking oil (WCO) with methanol in a heterogeneous system was done. Alumina impregnated with sodium hydroxide was utilized as a solid ...

متن کامل

A Comparative Study of Biodiesel Production from Beef Bone Marrow

This study is concerned with the viability of producing biodiesel from waste beef bone fat and evaluate this product according to the quality requirements defined by ASTM D- 6751. Accordingly, beef bone fat was heated to remove the moisture under vacuum at 60 . Alkaline Catalysed Transesterfication was carried out by  using 6:1 molar ratio of ethanol to fat in the presence of 1% w/w sodium hydr...

متن کامل

Effect of temperature, heating rate and zeolite-based catalysts on the pyrolysis of high impact polystyrene (HIPS) waste to produce fuel-like products

Pyrolysis of high impact polystyrene (HIPS) waste has been investigated under different process parameters, such as temperature, heating rate and types of zeolitic catalysts to produce valuable liquid products. Liquid, gas and coke as products of pyrolysis and aromatic, naphthene, olefin and paraffin as liquid components were obtained and their molecular weight distributions were studied with c...

متن کامل

Biohydrogen Production of Vinasse Derived from Bioethanol Processing Industry Wastewater: A Review

Background: Increasing global consumption of fossil fuels leads to greenhouse gas emissions, climate change and environmental pollution. Agricultural, animal and food industrial waste is one of the main sources of pollution. The bioethanol industry is one of 17 highly polluted industries. In the process of producing bioethanol, vinasse is produced, and so far 22.4 Giga litter of vinasse has bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2013